

Coupling in situ chemical oxidation with bioremediation

Nora Sutton
Environmental Technology
Wageningen University

Source-Path-Receptor

Dimensions		
Cost	Time	Sustainability Aspects
	++	
	++	
++		++
++	++	++
		Cost Time ++ ++

Coupling ISCO and Bioremediation

concentration or risk level

Coupling ISCO and Bioremediation

SO ISCO from a biological perspective

-- Cons:

- Harsh oxidizing conditions
- Chemical oxidant catalysis or reaction yields alkaline or acidic pH
- Can cause unfavorable redox conditions for biological conversion
- Non-specific reaction degrades soil organic matter

•++ Pros:

- Reduces contaminant concentrations to less toxic levels
- Improves biodegradability of parent compound(s)
- Can improve redox conditions for biological conversion
- Improves bioavailability of residual contaminant

Bioavailability

Ecotoxicology

Extent to which humans or ecological receptors are exposed to a contaminant

= Risk Assessment

Bioremediation

Extent to which contaminant is in phase available to biological degradation

=Degradation Assessment

Sorbed = low risk

NAPL= high risk

Sorbed = low degradation

NAPL= low degradation

Mobilized= high risk

Dissolved = high risk

ISCO

Mobilized= high degradation

Dissolved = high degradation

An example from the lab...

concentration or risk level

Coupling ISCO and Bioremediation

Bioavailability

Ecotoxicology

= increased risk

Bioremediation

= increased degradation

Aims:	Cost	Time	Sustainability Aspects
ISCO + Bioremediation	??	??	??

Questions and Discussion points

- •Is increased risk due to mobility noticed in field ISCO application?
- •Is this amplified contaminant mobility incorporated into remediation plans? In terms of risk or in terms of bioremediation
- •To what extent is bioremediation following ISCO included into site remediation plans?
- •Is bioavailability an important consideration when designing chemical or biological field treatments?

Contact:

Nora Sutton
Environmental Technology, WUR

Nora.Sutton@wur.nl

Funding:

More Info:

"Efforts to improve coupled in situ chemical oxidation with bioremediation: a review of optimization strategies"

Journal of Soils and Sediments (2011)

11:129-140.

